
Mathematics I — Problem Set 4

Adam Altmejd∗

2015–09–25

Due: October 1, 2015 at 12.00. Hand in by email or in my mailbox.

Remember to always use clear arguments, using proofs and counter-examples
when needed. Please write clearly (computer typed solutions are greatly ap-
preciated) and carefully state definitions and theorems from the Lecture Notes
whenever you use them. Collaboration in smaller groups is encouraged, however
everyone needs to hand in their own solutions.

Grading is pass/fail. There will be 5 problem sets in total, each having equal
weight. A pass will be rewarded as long you show that you have made an honest
effort on all questions.

If there is something that you find difficult, or have trouble understanding please
write so, instead of just writing down a solution that you did not comprehend.

Exercise 1 Continuity of the constraints (ex 5.11)

The following examples show that neither upper nor lower hemi-continuity of
the constraint correspondence γ is sufficient for the solution correspondence ξ
to be u.h.c.:

(a) Let f : [0, 1] → R be defined by f(x) = x, and let the correspondence
γ : R ⇒ [0, 1] be defined by γ(a) = [0, 1] for a ≤ 2 and γ(a) =

{ 1
2
}
for a > 2.

Verify that γ is compact-valued and u.h.c., that the solution correspondence
ξ is not u.h.c. and that the value function v is not continuous.

(b) Modify the constraint correspondence γ in (a) so that γ(2) =
{ 1

2
}
. What

happens to the continuity properties of γ, ξ and v?
∗If you find any typos, or think that something is unclear, please email me at

adam.altmejd@phdstudent.hhs.se. Good luck!
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Exercise 2 Kakutani (exam 2013)

(a) Consider the correspondence ϕ : X ⇒ X, wehere X = [0, 1]2, defined by

ϕ(x, y) =
[

arg max
x′∈[0,1]

u (x′, y)
]
×

[
arg max
y′∈[0,1]

v (x, y′)
]

where u and v are continuous and concave functions. Does ϕ have a fixed
point? (For each hypothesis in Kakutani’s theorem, verify whether it is met
or not, and motivate your answers.)

(b) Let u (x, y) ≡ 3x− y and v (x, y) ≡ x− (x− y)2. Identify the (potentially
empty) set of fixed points of the correspondence ϕ defined in (a).

Exercise 3 Maximization (almost ex 8.9)

Let f : R2
+ → R be defined by f(x) = x1x2 and let g : R2 → R be by

g(x, a) = 1− x1/a− x2, where a > 0.

(a) Draw a diagram of the set X(a) =
{
x ∈ R2

+ : g(x, a) ≥ 0
}
and indicate the

level curves f(x) = 1 and f(x) = 2. Draw the gradient of f as an arrow in
R2 at points x0 = (1, 1), x1 = (1, 2), x2 = (2, 1). Also, find and draw the
corresponding derivatives (affine approximations) of the three level curves
deth0(x), h1(x), h2(x).

(b) Give arguments for the existence of a solution, and verify that no solution
has x1 = 0 or x2 = 0.

(c) Identify the boundary point x∗(a) that, for a fixed and given, meets the
necessary first-order condition ∇f(x∗) + λ∇g(x∗, a) = 0 for a solution on
the boundary.

(d) Give arguments that show (or at least suggest) that the point x∗(a) indeed
is the solution.

(e) Find the maximum value v(a) of f over X(a) and draw a diagram of the
graph of the function v.

Exercise 4 Maximization (ex. 8.10)

Consider the program maxx≥0 f(x, a), where the function f : R2
+ → R is defined

by

f(x, a) = 100ex

ex + 100 − ax
2

(a) Verify (graphically if you want) that this program has at least one solution,
for each a > 0, but no solution for a = 0.

(b) Provide a necessary first-order condition for interior solutions, and argue
why there is no boundary solution.
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(c) Verify that there exists a critical value of a, say a0, such that the solution
is unique for every a 6= a0,and such that there exists exactly two solutions
a when a = a0. Draw diagrams for a = 2, 2.345 and 2.5, respectively.

(d) Verify graphically that the solution correspondence takes a jump at a = a0.
Use Berge’s Maximum Theorem (suitably adapted) to verify that the
solution correspondence is hemi-continuous at that point.

(e) Verify graphically or numerically that the value function appears to be
continuous. Use Berge’s Maximum Theorem (suitably adapted) to verify
that the value function is continuous.

Exercise 5 Local uniqueness (ex. 9.3)

Is the solution x0 = (1, 1, 1) to the following system of non-linear equations
locally unique? 

x2
1 + 2x2

2 + 4x2
3 = 7

4x1x
2
2 + 7x2x3 = 11

log (x1x2x3) = 1

Exercise 6 System of equations (ex. 9.4)

Consider the following system of equations in x ∈ R3
+, for a given parameter

a ∈ R: 
x1 + 2√x2 x3 = 3
x2x3 + x1x2 = 2
2x1x2x3 + 4 = a

(a) Write the equation system in the form f(x, a) = 0, where f : R4
+ → R3 and

where 0 is the zero vector in R3.

(b) For what value a0 of the parameter a is x0 = (1, 1, 1) a solution?

(c) Is f continuously differentiable at x0?

(d) Suppose a = a0. Is the solution x0 = (1, 1, 1) then locally unique?

(e) Does the equation system define the solution x ∈ R3 as an implicitly defined
function g of a, x = g(a), for values of a near a0?
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